	J2
	BPE 7: Algorithmen und Datenstrukturen
Lösungen
	Informatik

L2_3.3.2 	Suchalgorithmen prüfen

1	Gegeben ist das Array zahlen, das die natürlichen Zahlen von 80 bis 90 enthält.
zahlen = [80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90]
Mit Hilfe eines Programms soll geprüft werden, welche dieser Zahlen durch 3 teilbar sind. Zur Lösung des beschriebenen Problems wurde bereits folgendes Struktogramm entwickelt:

[image: Ein Bild, das Text, Screenshot, Schrift, Zahl enthält.

Automatisch generierte Beschreibung]

Hinweis:	Der Ausdruck zahl1 Modulo zahl2 liefert den Rest, den die Division von
zahl1 geteilt durch zahl2 ergibt.
Beispiel:	20 Modulo 7 liefert den Wert 6
	20 : 7 = 2, Rest 6 (7 * 2 + 6 = 20)

1.1	Führen Sie einen Schreibtischtest durch, indem Sie folgende Tabelle ausfüllen:

	zaehler
	zahlen[zaehler]
	rest
	teilbar

	0
	80
	2
	[]

	1
	81
	0
	[81]

	2
	82
	1
	[81]

	3
	83
	2
	[81]

	4
	84
	0
	[81, 84]

	5
	85
	1
	[81, 84]

	6
	86
	2
	[81, 84]

	7
	87
	0
	[81, 84, 87]

	8
	88
	1
	[81, 84, 87]

	9
	89
	2
	[81, 84, 87]

	10
	90
	0
	[81, 84, 87, 90]

1.2	Implementieren Sie den Programmcode gemäß des abgebildeten Struktogramms.
Für die Modulorechnung wird in den meisten Programmiersprachen das % -Zeichen als Operator verwendet. Der Ausdruck zahl1 Modulo zahl2 wird somit folgendermaßen codiert:
zahl1 % zahl2

Verwenden Sie für die Implementierung Ihrer Lösung die Datei L2_3_3_2_vorlage_suchalgorithmen_pruefen_teil1.html, die Ihnen im Ordner Aufgaben/Vorlagen in digitaler Form vorliegt.
Speichern Sie Ihre Lösung in Ihrem Ergebnisordner unter dem Namen
L2_3_3_2_suchalgorithmen_pruefen_teil1.html.

zahlen = [80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90]

laenge = len(zahlen)
teilbar = []
rest = 0

for zaehler in range(laenge):
 rest = zahlen[zaehler] % 3
 if rest == 0:
 teilbar.append(zahlen[zaehler])

print(teilbar)

2	Ihnen liegt folgendes Struktogramm zur Analyse vor:
[image:]

2.1	Nennen Sie die Zielsetzung des dargestellten Algorithmus.
	Binäre Suche einer Zahl in einem Array.

2.2	Analysieren Sie die einzelnen Anweisungen des dargestellten Algorithmus und lokalisieren Sie vorhandene logische Fehler.

Deklaration und Initialisierung: beginn als Ganzzahl =
Anzahl der Elemente des Arrays zahlen – 1
	 beginn als Ganzzahl = 0
Deklaration und Initialisierung: ende als Ganzzahl = 0
	 ende als Ganzzahl = Anzahl der Elemente des Arrays zahlen - 1
Zuweisung: merker = falsch	
 merker = wahr
Zuweisung: ende = neu + 1	
 ende = neu - 1
Zuweisung: beginn = neu – 1	
 ende = neu + 1
	L2_3.3.2 Lösung Suchalgorithmen prüfen.docx
zuletzt aktualisiert am 15.12.2023
	Seite 2 von 3

image1.png
L2_3_3_2_ Suchalgorithmen_pruefen_Teil1

Deklaration und Initalisierung: zahlen als Array = [80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90]

Deklaration und Initialisierung: laenge als Ganzzahl = Anzahl der Elemente des Arrays zahlen

Deklaration und Initialisierung: teilbar als Array =[]

Deklaration und Initialisierung: rest als Ganzzahl = 0

Wiederhole von zaehler = 0 solange zaehler < laenge, Schrittweite 1

Zuweisung: rest = zahlen[zaehler] % 3

J rest ==

Zuweisung: teilbar[Anzahl der Elemente des Arrays teilbar] = zahlen[zaehler]

Ausgabe: teilbar

image2.png
L2_3_3_2_Suchalgorithmen_pruefen_Teil2

Deklaration und Initialisierung: zahlen als Array = [8, 11, 13, 23, 31, 47, 61, 88]

Deklaration und Einlesen: suche_zahl als Ganzzahl

Deklaration und Initialisierung: merker als Wahrheitswert = False

Deklaration und Initialisierung: beginn als Ganzzahl =
Anzahl der Elemente des Arrays zahlen -1

Deklaration und Initialisierung: ende als Ganzzahl = 0

Wiederhole solange NOT merker AND beginn <= ende

Deklaration und Initialisierung: neu als Ganzzahl = (beginn + ende) / 2
) zahlen[neu] == suche_zahl
Zuweisung: zahlen[neu] > suche_zahl
merker = False J
Zuweisung: Zuweisung:
ende =neu + 1 beginn = neu - 1
J merker

Ausgabe: "Zahl gefunden” Ausgabe: "Zahl nicht gefunden”

